$\gamma = 102.92 (3)^{\circ}$

Z = 2

V = 855.7 (3) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.26 \times 0.22 \text{ mm}$

6821 measured reflections 3076 independent reflections

2951 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 9.90 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.056$

6 restraints

 $\Delta \rho_{\rm max} = 2.77 \ {\rm e} \ {\rm \AA}^{-1}$

 $\Delta \rho_{\rm min} = -1.58 \text{ e} \text{ Å}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[aqua[(2-hydroxyphenyl)acetato- $\kappa^2 O, O'$]lead(II)]- μ_3 -[(2-hydroxyphenyl)acetato- $\kappa^4 O: O, O': O'$]] monohydrate]

Jun-Xia Xiao,* Xian-Ge Wu and Liang Qin

School of Chemistry and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, People's Republic of China Correspondence e-mail: xiaojx090@126.com

Received 18 January 2010; accepted 2 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.036; wR factor = 0.084; data-to-parameter ratio = 13.5.

In the title complex, {[Pb(C₈H₇O₃)₂(H₂O)]·H₂O}_{*n*}, the Pb^{II} atom is seven-coordinated by six carboxylate O atoms from four different 2-hydroxyphenylacetate (2-dph) ligands and one water molecule, displaying a hemidirected irregular geometry, with the empty side of the metal ion capped by a benzene ring forming a Pb··· π contact [Pb···centroid distance = 3.342 (2) Å]. One 2-dph ligand functions in a bridging mode and connects Pb ions into a linear chain. The crystal packing is governed by intra- and intermolecular O– H···O hydrogen bonds.

Related literature

For general background to hydroxyphenylacetate complexes, see: Liwporncharoenvong *et al.* (2002); Nie & Li (2009). For general background to hemi- and holodirected geometries of lead(II) complexes, see: Shimoni-Livny *et al.* (1998).

Experimental

Crystal data

 $[Pb(C_8H_7O_3)_2(H_2O)]\cdot H_2O$ $M_r = 545.50$ Triclinic,*P*I*a*= 7.4610 (15) Å*b*= 10.721 (2) Å*c*= 11.701 (2) Å*a*= 109.72 (3)°*β*= 90.10 (3)°

Data collection

Rigaku/MSC Mercury CCD diffractometer Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{\rm min} = 0.075, T_{\rm max} = 0.126$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	
$vR(F^2) = 0.084$	
S = 1.05	
076 reflections	
28 parameters	

Table 1

Selected bond lengths (Å).

Pb1-O1	2.701 (5)	Pb1-O4	2.508 (4)
Pb1-O2	2.527 (4)	Pb1-O4 ⁱⁱ	2.772 (4)
Pb1-O3	2.453 (3)	Pb1 - O1W	2.687 (4)
Pb1-O3 ⁱ	2.662 (4)		

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 1, -y, -z + 1.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5\cdots O2W^{iii}$	0.82	1.80	2.618 (6)	173
$O6-H6\cdots O5^{i}$	0.82	1.93	2.698 (6)	156
$O1W - H1W \cdots O1^{ii}$	0.84	2.31	3.089 (6)	154
$O1W - H2W \cdots O2^{i}$	0.84	2.16	2.900 (6)	147
O2W−H3W···O1 ^{iv}	0.84	1.88	2.715 (6)	172
$O2W-H4W\cdots O6^{v}$	0.84	2.05	2.788 (7)	146

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x + 1, y, z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) x, y + 1, z.

Data collection: *CrystalStructure* (Rigaku/MSC, 2002); cell refinement: *CrystalStructure*; data reduction: *CrystalStructure*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Guangdong Natural Science Foundation (SN. 8452606101000739) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2276).

References

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Liwporncharoenvong, T., Lu, T. & Luck, R. L. (2002). *Inorg. Chim. Acta*, **329**, 51–58.

- Nie, X.-Y. & Li, Q.-Z. (2009). Acta Cryst. E65, m330.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853– 1867.

supplementary materials

Acta Cryst. (2010). E66, m273-m274 [doi:10.1107/S1600536810004162]

catena-Poly[[[aqua[(2-hydroxyphenyl)acetato- $\kappa^2 O, O'$]lead(II)]- μ_3 -[(2-hydroxyphenyl)acetato- $\kappa^4 O: O, O': O'$]] monohydrate]

J.-X. Xiao, X.-G. Wu and L. Qin

Comment

In the structural investigation of hydroxyphenylacetate complexes, it has been found that the hydroxyphenylacelic acid functions as a multidentate ligand (Liwporncharoenvong *et al.*, 2002; Nie & Li, 2009), with versatile binding and coordination modes. However, the structures of 2-hydroxyphenylacetate (2-dph) complexes have not been reported to date. In this paper, we report the crystal structure of the title compound, a new Pb complex obtained by the reaction of 2-Hdph and lead acetate in an alkaline aqueous solution.

As depicted in Fig. 1, the Pb^{II} atom is coordinated by six O atoms from four 2-dph ligands and one water molecule (Table 1). The coordination environment of the Pb^{II} atom can be described as a hemidirected irregular geometry, with the empty sapce around the meal ion filled by the stereochemically active 6 s² electron pair (Shimoni-Livny *et al.*, 1998) and a Pb^{...} π contact [Pb1^{...}Cg1ⁱ = 3.342 (2) Å, Cg1 is the centroid of the C11–C16 ring. Symmetry code: (i) 2-x, -y, 1-z]. The 2-dph ligands exhibit two types of coordination modes: one acts as bidentate chelating ligand; the other acts as a tetradentate chelate-bridging ligand to coordinate three Pb^{II} ions. The carboxylate groups of the tetradentate ligands connect Pb^{II} ions into a Pb–carboxylate linear chain, with Pb^{...}Pb separations of 4.330 (2) and 4.381 (3) Å (Fig. 2). The crystal packing is governed by intra- and intermolecular O–H^{...}O hydrogen bonding interactions involving the hydroxy and carboxylate groups of the 2-dph ligands, coordinated and uncoordinated water molecules (Table 2).

Experimental

The title compound was prepared by the addition of a stoichiometric amount of lead acetate (1 mmol, 0.325 g) to a hot aqueous solution (25 ml) of 2-Hdph (1 mmol, 0.152 g). The pH value was then adjusted to 7.0 to 8.0 with NaOH (1 mmol, 0.04 g). The resulting solution was filtered, and colorless single crystals were obtained at room temperature over several days.

Refinement

H atoms on C atoms and hydroxyl O atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH₂) Å, O—H = 0.82 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$. Water H atoms were tentatively located in difference Fourier maps and refined as riding, with distance restraints of O—H = 0.84 and H···H = 1.39 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$. The hightest peak in final difference map is located 0.94 Å from Pb1 and the deepest hole is located 0.97 Å from Pb1.

Figures

Fig. 1. The asymmetric unit of the title compound, together with symmetry-related atoms to complete the coordination environment. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 2-x, -y, 1-z; (ii) 1-x, -y, 1-z.]

Fig. 2. A polyhedral view of the Pb–carboxylate chain along the *a* axis. H atoms have been omitted for clarity.

$catena - Poly[[[aqua[(2-hydroxyphenyl)acetato- \kappa^2 O, O']]ead(II)] - \mu_3 - [(2-hydroxyphenyl)acetato- \kappa^4 O; O, O'; O']] monohydrate]$

Z = 2

Crystal data

[Pb(C₈H₇O₃)₂(H₂O)]·H₂O $M_r = 545.50$ Triclinic, *P*T Hall symbol: -P 1 a = 7.4610 (15) Å b = 10.721 (2) Å c = 11.701 (2) Å a = 109.72 (3)° β = 90.10 (3)° γ = 102.92 (3)° V = 855.7 (3) Å³

F(000) = 520 $D_x = 2.117 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 2895 reflections $\theta = 2.4-27.9^{\circ}$ $\mu = 9.90 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.26 \times 0.22 \text{ mm}$

Data collection

3076 independent reflections
2951 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.056$
$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
$h = -8 \rightarrow 8$
$k = -12 \rightarrow 12$
$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.084$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0431P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3076 reflections	$(\Delta/\sigma)_{\text{max}} = 0.003$
228 parameters	$\Delta \rho_{max} = 2.77 \text{ e } \text{\AA}^{-3}$
6 restraints	$\Delta \rho_{\rm min} = -1.58 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pb1	0.76187 (2)	0.029805 (17)	0.601979 (13)	0.02638 (11)
01	0.6798 (6)	0.2761 (5)	0.6889 (4)	0.0433 (10)
O2	0.9615 (6)	0.2666 (4)	0.6423 (4)	0.0439 (10)
O6	0.7995 (6)	-0.2407 (5)	0.1437 (5)	0.0487 (11)
H6	0.8311	-0.3082	0.1465	0.073*
05	1.1923 (6)	0.5007 (4)	0.8890 (3)	0.0413 (9)
H5	1.2721	0.5388	0.9460	0.062*
C1	0.8449 (8)	0.3338 (6)	0.6845 (5)	0.0320 (12)
C2	0.9012 (8)	0.4889 (6)	0.7318 (6)	0.0435 (14)
H2A	0.8219	0.5223	0.6892	0.052*
H2B	0.8802	0.5217	0.8175	0.052*
C3	1.0981 (8)	0.5484 (5)	0.7178 (5)	0.0392 (13)
C4	1.1459 (10)	0.6010 (6)	0.6257 (6)	0.0471 (15)
H4	1.0530	0.6059	0.5753	0.056*
C5	1.3273 (10)	0.6461 (7)	0.6070 (6)	0.0512 (17)
H5A	1.3558	0.6801	0.5442	0.061*
C6	1.4641 (10)	0.6410 (7)	0.6797 (6)	0.0531 (17)
H6A	1.5865	0.6687	0.6652	0.064*
C7	1.4221 (9)	0.5938 (6)	0.7770 (6)	0.0443 (14)
H7	1.5162	0.5935	0.8289	0.053*
C8	1.2403 (8)	0.5481 (5)	0.7949 (5)	0.0340 (12)
С9	0.7658 (7)	0.0291 (5)	0.3582 (5)	0.0269 (11)
C10	0.7743 (8)	0.0257 (7)	0.2278 (5)	0.0324 (12)
H10A	0.6655	-0.0388	0.1794	0.039*
H10B	0.7718	0.1151	0.2260	0.039*
C11	0.9411 (7)	-0.0131 (6)	0.1715 (4)	0.0296 (12)
C12	0.9491 (7)	-0.1495 (6)	0.1294 (4)	0.0300 (12)
C13	1.1053 (8)	-0.1886 (7)	0.0786 (5)	0.0407 (14)
H13	1.1097	-0.2799	0.0523	0.049*
C14	1.2530 (9)	-0.0917 (8)	0.0675 (6)	0.0448 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

1.3572	-0.1176	0.0332	0.054*
1.2474 (9)	0.0435 (7)	0.1069 (5)	0.0478 (18)
1.3478	0.1088	0.0996	0.057*
1.0910 (9)	0.0828 (6)	0.1580 (5)	0.0390 (14)
1.0871	0.1741	0.1833	0.047*
0.9083 (5)	0.0283 (4)	0.4142 (3)	0.0339 (9)
0.6204 (5)	0.0363 (4)	0.4101 (3)	0.0366 (9)
0.6888 (6)	-0.2332 (5)	0.4561 (4)	0.0531 (12)
0.7696	-0.2339	0.4061	0.080*
0.5860	-0.2720	0.4161	0.080*
0.4261 (6)	0.6318 (6)	0.0817 (4)	0.0617 (14)
0.3977	0.6548	0.1537	0.093*
0.5291	0.6783	0.0746	0.093*
	1.3572 1.2474 (9) 1.3478 1.0910 (9) 1.0871 0.9083 (5) 0.6204 (5) 0.6888 (6) 0.7696 0.5860 0.4261 (6) 0.3977 0.5291	1.3572 -0.1176 1.2474 (9) 0.0435 (7) 1.3478 0.1088 1.0910 (9) 0.0828 (6) 1.0871 0.1741 0.9083 (5) 0.0283 (4) 0.6204 (5) 0.0363 (4) 0.6888 (6) -0.2332 (5) 0.7696 -0.2339 0.5860 -0.2720 0.4261 (6) 0.6318 (6) 0.3977 0.6548 0.5291 0.6783	1.3572 -0.1176 0.0332 1.2474 (9) 0.0435 (7) 0.1069 (5) 1.3478 0.1088 0.0996 1.0910 (9) 0.0828 (6) 0.1580 (5) 1.0871 0.1741 0.1833 0.9083 (5) 0.0283 (4) 0.4142 (3) 0.6204 (5) 0.0363 (4) 0.4101 (3) 0.6888 (6) -0.2332 (5) 0.4561 (4) 0.7696 -0.2339 0.4061 0.5860 -0.2720 0.4161 0.4261 (6) 0.6318 (6) 0.0817 (4) 0.3977 0.6548 0.1537 0.5291 0.6783 0.0746

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.01845 (15)	0.03419 (16)	0.02621 (15)	0.00640 (11)	0.00500 (9)	0.00999 (11)
01	0.029 (2)	0.046 (2)	0.049 (2)	0.005 (2)	0.0044 (18)	0.013 (2)
O2	0.031 (2)	0.034 (2)	0.063 (3)	0.0088 (19)	0.017 (2)	0.012 (2)
O6	0.031 (2)	0.041 (2)	0.075 (3)	0.006 (2)	0.004 (2)	0.022 (2)
05	0.041 (2)	0.042 (2)	0.041 (2)	0.006 (2)	0.0043 (17)	0.0162 (19)
C1	0.026 (3)	0.038 (3)	0.030 (3)	0.006 (3)	0.002 (2)	0.010 (2)
C2	0.029 (3)	0.035 (3)	0.063 (4)	0.008 (3)	0.005 (3)	0.014 (3)
C3	0.034 (3)	0.025 (3)	0.055 (3)	0.005 (3)	0.003 (3)	0.010 (3)
C4	0.061 (4)	0.035 (3)	0.047 (3)	0.013 (3)	0.003 (3)	0.015 (3)
C5	0.055 (4)	0.043 (3)	0.055 (4)	0.002 (3)	0.010 (3)	0.023 (3)
C6	0.043 (4)	0.047 (4)	0.064 (4)	0.002 (3)	0.022 (3)	0.018 (3)
C7	0.031 (3)	0.044 (3)	0.056 (4)	0.005 (3)	0.002 (3)	0.018 (3)
C8	0.029 (3)	0.030 (3)	0.040 (3)	0.006 (2)	0.004 (2)	0.009 (2)
С9	0.022 (3)	0.028 (2)	0.029 (2)	0.006 (2)	0.003 (2)	0.009 (2)
C10	0.027 (3)	0.052 (3)	0.025 (3)	0.018 (3)	0.010 (2)	0.016 (2)
C11	0.029 (3)	0.040 (3)	0.017 (2)	0.014 (3)	0.0021 (19)	0.003 (2)
C12	0.026 (3)	0.036 (3)	0.022 (2)	0.006 (2)	0.0002 (19)	0.003 (2)
C13	0.039 (3)	0.048 (3)	0.039 (3)	0.021 (3)	0.008 (3)	0.013 (3)
C14	0.035 (3)	0.068 (4)	0.038 (3)	0.025 (3)	0.016 (3)	0.018 (3)
C15	0.033 (4)	0.061 (5)	0.048 (4)	0.000 (4)	0.007 (3)	0.024 (4)
C16	0.047 (4)	0.038 (3)	0.026 (2)	0.004 (3)	0.005 (2)	0.008 (2)
O3	0.0205 (19)	0.057 (2)	0.0277 (17)	0.0135 (18)	0.0076 (14)	0.0173 (17)
O4	0.0182 (19)	0.052 (2)	0.044 (2)	0.0106 (18)	0.0099 (16)	0.0217 (19)
O1W	0.046 (3)	0.045 (2)	0.057 (3)	0.000 (2)	0.019 (2)	0.011 (2)
O2W	0.036 (3)	0.092 (4)	0.044 (2)	0.018 (3)	0.007 (2)	0.005 (3)

Geometric parameters (Å, °)

Pb1—O1	2.701 (5)	С6—Н6А	0.9300
Pb1—O2	2.527 (4)	С7—С8	1.377 (8)
Pb1—O3	2.453 (3)	С7—Н7	0.9300

Pb1—O3 ⁱ	2.662 (4)	С9—ОЗ	1.251 (6)
Pb1—O4	2.508 (4)	С9—О4	1.249 (6)
Pb1—O4 ⁱⁱ	2.772 (4)	C9—C10	1.515 (7)
Pb1—O1W	2.687 (4)	C10—C11	1.485 (7)
01—C1	1.259 (7)	C10—H10A	0.9700
O2—C1	1.249 (7)	C10—H10B	0.9700
O6—C12	1.362 (7)	C11—C12	1.392 (8)
O6—H6	0.8200	C11—C16	1.388 (8)
O5—C8	1.377 (7)	C12—C13	1.393 (8)
O5—H5	0.8200	C13—C14	1.375 (9)
C1—C2	1.521 (8)	C13—H13	0.9300
C2—C3	1.499 (8)	C14—C15	1.375 (9)
C2—H2A	0.9700	C14—H14	0.9300
С2—Н2В	0.9700	C15—C16	1.396 (9)
C3—C4	1.389 (9)	C15—H15	0.9300
C3—C8	1.393 (8)	С16—Н16	0.9300
C4—C5	1.376 (10)	O1W—H2W	0.8401
С4—Н4	0.9300	O1W—H1W	0.8400
C5—C6	1.349 (10)	O2W—H3W	0.8365
C5—H5A	0.9300	O2W—H4W	0.8383
C6—C7	1.403 (9)		
O3—Pb1—O4	51.86 (12)	C5—C6—C7	120.2 (6)
O3—Pb1—O2	72.89 (14)	С5—С6—Н6А	119.9
O4—Pb1—O2	89.65 (15)	С7—С6—Н6А	119.9
O3—Pb1—O3 ⁱ	64.41 (14)	C8—C7—C6	119.5 (6)
$O4$ —Pb1— $O3^i$	115.37 (11)	С8—С7—Н7	120.2
O2—Pb1—O3 ⁱ	80.89 (13)	С6—С7—Н7	120.2
O3—Pb1—O1W	74.25 (14)	O5—C8—C7	121.6 (6)
O4—Pb1—O1W	77.54 (15)	O5—C8—C3	117.7 (5)
O2—Pb1—O1W	145.72 (13)	C7—C8—C3	120.7 (6)
O3 ⁱ —Pb1—O1W	76.41 (14)	O3—C9—O4	120.4 (5)
O3—Pb1—O1	104.29 (14)	O3—C9—C10	118.9 (4)
O4—Pb1—O1	80.18 (14)	O4—C9—C10	120.6 (5)
O2—Pb1—O1	49.36 (13)	C11—C10—C9	113.5 (4)
O3 ⁱ —Pb1—O1	128.80 (13)	C11—C10—H10A	108.9
O1—Pb1—O4 ⁱⁱ	76.94 (13)	C9—C10—H10A	108.9
O2—Pb1—O4 ⁱⁱ	125.05 (14)	C11-C10-H10B	108.9
O3—Pb1—O4 ⁱⁱ	117.78 (12)	C9—C10—H10B	108.9
O3 ⁱ —Pb1—O4 ⁱⁱ	154.01 (12)	H10A—C10—H10B	107.7
O4—Pb1—O4 ⁱⁱ	67.94 (11)	C12—C11—C16	118.2 (5)
O1W—Pb1—O4 ⁱⁱ	79.49 (13)	C12—C11—C10	119.8 (5)
O1W—Pb1—O1	152.25 (15)	C16—C11—C10	122.1 (5)
C1—O1—Pb1	90.2 (4)	O6—C12—C11	116.6 (5)
C1—O2—Pb1	98.8 (3)	O6—C12—C13	122.3 (5)
С12—О6—Н6	109.5	C11—C12—C13	121.1 (5)
С8—О5—Н5	109.5	C14—C13—C12	119.7 (6)

supplementary materials

O2—C1—O1	121.5 (5)	C14—C13—H13	120.1
O2—C1—C2	120.0 (5)	C12—C13—H13	120.1
O1—C1—C2	118.5 (5)	C15—C14—C13	120.3 (6)
C3—C2—C1	114.7 (5)	C15—C14—H14	119.9
С3—С2—Н2А	108.6	C13—C14—H14	119.9
C1—C2—H2A	108.6	C14—C15—C16	120.0 (6)
С3—С2—Н2В	108.6	C14—C15—H15	120.0
С1—С2—Н2В	108.6	С16—С15—Н15	120.0
H2A—C2—H2B	107.6	C11-C16-C15	120.7 (6)
C4—C3—C8	117.8 (6)	C11-C16-H16	119.6
C4—C3—C2	121.6 (6)	C15—C16—H16	119.6
C8—C3—C2	120.6 (6)	C9—O3—Pb1	95.1 (3)
C5—C4—C3	121.5 (7)	C9—O3—Pb1 ⁱ	146.8 (3)
C5—C4—H4	119.2	Pb1—O3—Pb1 ⁱ	115.59 (14)
C3—C4—H4	119.2	C9—O4—Pb1	92.5 (3)
C6—C5—C4	120.1 (6)	H2W—O1W—H1W	107.6
С6—С5—Н5А	119.9	H3W—O2W—H4W	112.2
C4—C5—H5A	119.9		

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H··· A
173
156
154
147
172
146

Symmetry codes: (iii) x+1, y, z+1; (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) x, y+1, z.

02W

